skip to main content


Search for: All records

Creators/Authors contains: "Poulsen, Christopher J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The apex of Earth's penultimate icehouse during the Permo‐Carboniferous coincided with dramatic glacial‐interglacial fluctuations in atmospheric CO2, sea level, and high‐latitude ice. Global transformations in marine fauna also occurred during this interval, including a rise to peak foraminiferal diversity, suggesting that glacial‐interglacial climate change impacted marine ecosystems. Nevertheless, changes in ocean circulation and temperature over the Permo‐Carboniferous and their influence on marine ecosystem change are largely unknown. Here, we present simulations of glacial and interglacial phases of the latest Carboniferous‐early Permian (∼305‐295 Ma) using the Community Earth System Model version 1.2 to provide estimates of global ocean circulation and temperature during this interval. We characterize general patterns of glacial and interglacial surface ocean currents, temperature, and salinity, and compare them to the documented abundance and distribution of Permo‐Carboniferous marine fauna as well as a preindustrial climate simulation. We then explore how glacial‐interglacial changes in atmospheric CO2, sea level, and high‐latitude ice extent impact thermohaline circulation. We find that glacial‐interglacial changes in equatorial surface temperatures are consistently ∼3–6°C. Ocean circulation is stronger overall in the glacial simulation, particularly as lower atmospheric CO2enables deep convection in the Northern Hemisphere. Wind‐driven circulation, heat transport, and upwelling intensity are stronger overall in the Permo‐Carboniferous superocean relative to the preindustrial oceans at the same level of atmospheric CO2. We also find that CO2‐induced glacial conditions of the early Permian may have promoted foraminiferal diversity through increased thermal gradients and suppressed riverine input in marine shelf environments.

     
    more » « less
  2. Variability in resource availability is hypothesized to be a significant driver of primate adaptation and evolution, but most paleoclimate proxies cannot recover environmental seasonality on the scale of an individual lifespan. Oxygen isotope compositions (δ 18 O values) sampled at high spatial resolution in the dentitions of modern African primates ( n = 2,352 near weekly measurements from 26 teeth) track concurrent seasonal precipitation, regional climatic patterns, discrete meteorological events, and niche partitioning. We leverage these data to contextualize the first δ 18 O values of two 17 Ma Afropithecus turkanensis individuals from Kalodirr, Kenya, from which we infer variably bimodal wet seasons, supported by rainfall reconstructions in a global Earth system model. Afropithecus ’ δ 18 O fluctuations are intermediate in magnitude between those measured at high resolution in baboons ( Papio spp.) living across a gradient of aridity and modern forest-dwelling chimpanzees ( Pan troglodytes verus ). This large-bodied Miocene ape consumed seasonally variable food and water sources enriched in 18 O compared to contemporaneous terrestrial fauna ( n = 66 fossil specimens). Reliance on fallback foods during documented dry seasons potentially contributed to novel dental features long considered adaptations to hard-object feeding. Developmentally informed microsampling recovers greater ecological complexity than conventional isotope sampling; the two Miocene apes ( n = 248 near weekly measurements) evince as great a range of seasonal δ 18 O variation as more time-averaged bulk measurements from 101 eastern African Plio-Pleistocene hominins and 42 papionins spanning 4 million y. These results reveal unprecedented environmental histories in primate teeth and suggest a framework for evaluating climate change and primate paleoecology throughout the Cenozoic. 
    more » « less
  3. The latitudinal temperature gradient is a fundamental state parameter of the climate system tied to the dynamics of heat transport and radiative transfer. Thus, it is a primary target for temperature proxy reconstructions and global climate models. However, reconstructing the latitudinal temperature gradient in past climates remains challenging due to the scarcity of appropriate proxy records and large proxy–model disagreements. Here, we develop methods leveraging an extensive compilation of planktonic foraminifera δ 18 O to reconstruct a continuous record of the latitudinal sea-surface temperature (SST) gradient over the last 95 million years (My). We find that latitudinal SST gradients ranged from 26.5 to 15.3 °C over a mean global SST range of 15.3 to 32.5 °C, with the highest gradients during the coldest intervals of time. From this relationship, we calculate a polar amplification factor (PAF; the ratio of change in >60° S SST to change in global mean SST) of 1.44 ± 0.15. Our results are closer to model predictions than previous proxy-based estimates, primarily because δ 18 O-based high-latitude SST estimates more closely track benthic temperatures, yielding higher gradients. The consistent covariance of δ 18 O values in low- and high-latitude planktonic foraminifera and in benthic foraminifera, across numerous climate states, suggests a fundamental constraint on multiple aspects of the climate system, linking deep-sea temperatures, the latitudinal SST gradient, and global mean SSTs across large changes in atmospheric CO 2 , continental configuration, oceanic gateways, and the extent of continental ice sheets. This implies an important underlying, internally driven predictability of the climate system in vastly different background states. 
    more » « less
  4. null (Ed.)
    Abstract. Equilibrium climate sensitivity (ECS) has been directly estimated using reconstructions of past climates that are different than today's. A challenge to this approach is that temperature proxies integrate over the timescales of the fast feedback processes (e.g., changes in water vapor, snow, and clouds) that are captured in ECS as well as the slower feedback processes (e.g., changes in ice sheets and ocean circulation) that are not. A way around this issue is to treat the slow feedbacks as climate forcings and independently account for their impact on global temperature. Here we conduct a suite of Last Glacial Maximum (LGM) simulations using the Community Earth System Model version 1.2 (CESM1.2) to quantify the forcingand efficacy of land ice sheets (LISs) and greenhouse gases (GHGs) in order to estimate ECS. Our forcing and efficacy quantification adopts the effective radiative forcing (ERF) and adjustment framework and provides a complete accounting for the radiative, topographic, and dynamical impacts of LIS on surface temperatures. ERF and efficacy of LGM LIS are −3.2 W m−2 and 1.1, respectively. The larger-than-unity efficacy is caused by the temperature changes over land and the Northern Hemisphere subtropical oceans which are relatively larger than those in response to a doubling of atmospheric CO2. The subtropical sea-surface temperature (SST) response is linked to LIS-induced wind changes and feedbacks in ocean–atmosphere coupling and clouds. ERF and efficacy of LGM GHG are −2.8 W m−2 and 0.9, respectively. The lower efficacy is primarily attributed to a smaller cloud feedback at colder temperatures. Our simulations further demonstrate that the direct ECS calculation using the forcing, efficacy, and temperature response in CESM1.2 overestimates the true value in the model by approximately 25 % due to the neglect of slow ocean dynamical feedback. This is supported by the greater cooling (6.8 ∘C) in a fully coupled LGM simulation than that (5.3 ∘C) in a slab ocean model simulation with ocean dynamics disabled. The majority (67 %) of the ocean dynamical feedback is attributed to dynamical changes in the Southern Ocean, where interactions between upper-ocean stratification, heat transport, and sea-ice cover are found to amplify the LGM cooling. Our study demonstrates the value of climate models in the quantification of climate forcings and the ocean dynamical feedback, which is necessary for an accurate direct ECS estimation. 
    more » « less
  5. Piecing together the history of carbon (C) perturbation events throughout Earth’s history has provided key insights into how the Earth system responds to abrupt warming. Previous studies, however, focused on short-term warming events that were superimposed on longer-term greenhouse climate states. Here, we present an integrated proxy (C and uranium [U] isotopes and paleo CO 2 ) and multicomponent modeling approach to investigate an abrupt C perturbation and global warming event (∼304 Ma) that occurred during a paleo-glacial state. We report pronounced negative C and U isotopic excursions coincident with a doubling of atmospheric CO 2 partial pressure and a biodiversity nadir. The isotopic excursions can be linked to an injection of ∼9,000 Gt of organic matter–derived C over ∼300 kyr and to near 20% of areal extent of seafloor anoxia. Earth system modeling indicates that widespread anoxic conditions can be linked to enhanced thermocline stratification and increased nutrient fluxes during this global warming within an icehouse. 
    more » « less
  6. Abstract

    The widening of the South Atlantic Basin led to the reorganization of regional atmospheric and oceanic circulations. However, the response of the Atlantic Intertropical Convergence Zone (ITCZ), and South American and African monsoons across paleoclimate states, especially under constant paleogeographic and climatic changes, has not been well understood. Here we report on paleoclimate simulations of the Cenomanian (∼95 Ma), early Eocene (∼55 Ma), and middle Miocene (∼14 Ma) using the Community Earth System Model version 1.2 to understand how the migration of the South American and African continents to their modern‐day positions, uplift of the Andes and East African Rift Zone, and the decline of atmospheric CO2changed the Atlantic ITCZ, and the South American and African monsoons and rainforests. Our work demonstrates that the South Atlantic widening developed the Atlantic ITCZ. The South Atlantic widening and Andean orogeny led to a stronger South American monsoon. We find the orogeny of the East African Rift Zone is the primary mechanism that strengthened the East African monsoon, whereas the West African monsoon became weaker through time as West Africa migrated toward the subtropics and CO2levels fell below 500 ppm. We utilize the Köppen‐Geiger Climate Classification as an indicator for maximum rainforest extent. We find that during the Cenomanian and early Eocene, a Pan‐African rainforest existed, while the Amazon rainforest was restricted toward the northwestern corner of South America. During the middle Miocene, the Pan‐African rainforest was reduced to near its modern‐day size, while the Amazon rainforest expanded eastward.

     
    more » « less
  7. null (Ed.)